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Abstract

This paper describes an investigation on the sound radiation from forced vibration of rectangular
orthotropic plates under moving loads. The vibrations of a rectangular orthotropic thin plate with general
boundary conditions traversed by moving loads are first solved. Based on the Rayleigh integral and the
dynamic response of the plate, the acoustic pressure distributions around the plate are obtained in the time
domain. The effects of light and heavy moving loads are separately studied. Simplified methods for
calculation of the acoustic pressure distributions in far field are developed. The effects of moving mass,
damping coefficient, boundary conditions and moving speed on the dynamic responses of the plate and the
acoustic pressure distributions are investigated.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Many researchers have studied the vibrations of plates and the sound radiation from them
because of its importance in engineering. Extensive research on the vibration and acoustic
responses of a plate subjected to a stationary harmonic point load has been done in the past. The
corresponding case with moving loads is probably of more practical interest to civil engineers.
Many types of bridges, such as solid or voided slab decks and beam-and-slab decks, can be
see front matter r 2004 Elsevier Ltd. All rights reserved.
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modelled as orthotropic plates with two different moduli. The evaluation of structure-borne noise
of a highway or railway bridge can be considered as an orthotropic plate with moving loads.
However, little work on this area has been done probably because of the difficulty and the
plethora of factors and uncertainties involved.
The dynamic response of isotropic plates under moving loads has been well studied, and

classical solutions have been obtained by Raske and Schlack [1] and Fryba [2]. Using the finite
element method, Yoshida and Weaver [3] and Wu et al. [4] analysed the dynamic responses of
plates subjected to various types of moving loads. Gbadeyan and Oni [5] presented some
analytical results for the dynamic behaviour of rectangular plates under moving loads based on
modified generalized finite integral transforms and the modified Struble’s method. By modelling
the rectangular bridge deck by orthotropic plate elements and the vehicle as a single sprung mass
moving along the deck, Humar and Kashif [6] solved the vehicle–bridge interaction problem and
identified the parameters governing the dynamic response. Takabatake [7] presented a simplified
analytical method for rectangular plates with stepped thickness subjected to moving loads using a
characteristic function to account for the discontinuous variation of the bending stiffness and
mass of the plate. The effect of the additional mass due to moving loads was also examined. Using
the large deflection theory of the Mindlin plate and Galerkin’s method, Wang and Kuo [8]
examined the static responses of a plate produced by its own weight and its dynamic responses
caused by the coupling effect of these static responses with a set of moving forces. To obtain the
vibration of a slab bridge subjected to a convoy of moving vehicles, Cheung et al. [9] presented a
numerical method that combined the benefits offered by the structural impedance method and
finite strip method so that the bridge and the vehicles could be separately considered with their
interaction dealt with subsequently. Shadnam et al. [10] investigated the dynamics of plates under
the influence of relatively large moving masses and concluded that the response of structures due
to moving mass must be properly taken into account.
A lot of work has been done on the estimation of sound radiation from vibrating plates.

Maidanik [11] investigated the single-mode radiation resistance of a finite, simply supported
baffled plate. Wallace [12] carried out a theoretical study on a finite rectangular panel by
considering the energy radiated by a mode of the panel into the far field. The method yielded low-
frequency asymptotic solutions and permitted a precise numerical determination of the radiation
resistance over the entire frequency range. Maidanik [13] gave an asymptotic formula for the
radiation coefficients, which is still widely used. Williams and Maynard [14] suggested a numerical
method for evaluation of the Rayleigh integral for planar radiators using the FFT. Schedin et al.
[15] reported a comparison between measured and simulated transient acoustic fields generated by
a thin rectangular impacted steel plate. The plate vibration was modelled in the time domain using
a finite difference scheme while the radiated acoustic was obtained by solving numerically the
Rayleigh integral equation by a simple boundary element method. The state of the art has been
summarized by Fahy [16] and Cremer et al. [17].
This paper describes an investigation on the sound radiation from forced vibration of

rectangular orthotropic plates with general boundary conditions under moving loads. Apart from
the development of efficient computational methods for evaluation of the structure-borne noise,
the cases that give rise to high vibration and sound radiation levels are identified. After solving for
the forced vibration of the plates for different cases, this paper presents some theoretical
predictions of the radiation acoustic field of the plate together with some simplified methods to
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obtain the acoustic pressure distributions in far field. The effects of the mass ratios, speed and
boundary conditions on the radiation acoustic field are studied.
2. Rectangular orthotropic plates under moving loads

2.1. Governing equations and general solution

A moving load Fp is moving at speed vx on a rectangular orthotropic plate of length a

and breadth b as shown in Fig. 1. The inertia effect of the moving load may or may not be
considered depending on the mass involved. The equation of motion and the initial conditions can
be written as

Dx

@4w

@x4
þ 2H

@4w

@x2@y2
þ Dy

@4w

@y4
þ cd

@w

@t
þ rh

@2w

@t2
¼ pðx; y; tÞdðx � uxtÞdðy � e0 � uytÞ; (1)

wðx; y; tÞjt¼0 ¼ wðx; y; 0Þ; _wðx; y; tÞjt¼0 ¼ _wðx; y; 0Þ; (2)

where Dx and Dy are the flexural rigidities in the x and y directions respectively, Dxy is the
torsional rigidity, H is the equivalent rigidity taken as nyDx þ 2Dxy or nxDy þ 2Dxy; h is the
thickness of the plate, r is the mass density of plate, nx and ny are Poisson’s ratios in the x and y

directions, respectively, and cd is the damping coefficient of the plate. Note that the moving load is
expressed in terms of the magnitude pðx; y; tÞ of the load, the velocity components ux and uy in the
x and y directions, the Dirac Delta functions dðxÞ and dðyÞ to define the coordinates of the loaded
point, and the distance e0 between the path and the x-axis. The displacement wðx; y; tÞ at point
(x,y) of the plate at time t can be written by modal superposition as

wðx; y; tÞ ¼
X1
m¼1

X1
n¼1

Umnðx; yÞqmnðtÞ; (3)

where Umnðx; yÞ is a typical mode shape with associated natural frequency omn of the plate that
can be obtained using the methods by Huffington and Hoppmann [18] or Leissa [19], and qmnðtÞ is
the corresponding modal coordinate. Note that the mode shapes and associated natural
frequencies used for subsequent analysis are those of the plate taking no account of the inertia
x

yz 

b
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Fig. 1. A rectangular orthotropic plate under a moving load.
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effect of the moving load. Substituting Eq. (3) into Eq. (1) results in the decoupled equations in
terms of the modal coordinates. Using the modal orthogonality conditions and assuming
proportional damping in the system give the normalised equation of motion

€qmnðtÞ þ 2zmnomn _qmnðtÞ þ o2
mnqmnðtÞ ¼ pmnðtÞ; (4)

where the generalised mass of the plate ~mmn; the generalised damping factor zmn; the generalised
natural frequency omn and the normalised force pmnðtÞ are given, respectively, by

~mmn ¼

Z a

0

Z b

0

rhU2
mnðx; yÞdxdy; (5)

zmn ¼ cd=2rhomn; (6)

o2
mn ¼

1

~mmn

Z a

0

Z b

0

Dx
@4Umn

@x4
þ 2H

@4Umn

@x2@y2
þ Dy

@4Umn

@y4

� �
Umn dxdy; (7)

pmnðtÞ ¼ pðuxt; y0 þ uyt; tÞUmnðuxt; e0 þ uytÞ= ~mmn: (8)

For a lightly damped system (i.e. zmno1:0), Eq. (4) can be solved in the time domain by Duhamel
integral, giving the generalised displacement qmnðtÞ as

qmnðtÞ ¼ expð�zmnomntÞðamn sin $mnt þ bmn cos $mntÞ

þ
1

$mn

Z t

0

pmnðtÞ expð�zmnomnðt � tÞÞ sin $mnðt � tÞdt; ð9Þ

where the generalised natural frequency of damped free vibration $mn is defined as

$mn ¼ omn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� z2mn

q
(10)

and the parameters amn and bmn can be determined from the initial conditions wðx; y; 0Þ and
_wðx; y; 0Þ shown in Eq. (2) as

amn ¼

R a

0

R b

0 ð _wðx; y; 0Þ þ 2zmnomnwðx; y; 0ÞÞUmn dxdy

$mn

R a

0

R b

0 U2
mn dxdy

; (11)

bmn ¼

R a

0

R b

0 wðx; y; 0ÞUmn dxdyR a

0

R b

0 U2
mndxdy

: (12)

The dynamic responses of the plate may be divided into three different stages, including the
initial free vibration, the forced vibration under the moving load and the free vibration after the
moving load has left. The initial free vibration compatible with the initial conditions wðx; y; 0Þ and
_wðx; y; 0Þ described by Eq. (2) is simply the first part of Eq. (9). After the moving load leaves the
plate at time tk; the ensuing free vibration can be similarly determined in terms of the conditions
wðx; y; tkÞ and _wðx; y; tkÞ then. Differentiation of Eq. (9) gives the generalised velocity _qmnðtÞ while
the generalised acceleration €qmnðtÞ can be obtained by substituting qmnðtÞ and _qmnðtÞ into Eq. (4).
Substituting the generalised displacement qmnðtÞ from Eq. (9) into Eq. (3) gives the displacement
wðx; y; tÞ of the plate at point (x, y) and time t. The velocity _wðx; y; tÞ and acceleration €wðx; y; tÞ of
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the plate can be worked out by differentiation. If there are multiple moving loads, the above
procedures can still be applied with the help of superposition.

2.2. Plates with different boundary conditions

Various methods are available to deal with rectangular plates with different boundary
conditions. Rectangular plates having one or two pairs of opposite simply supported edges allow
more straightforward analysis. The typical mode shape Umnðx; yÞ of a rectangular plate with at
least a pair of opposite simply supported edges [18] at x ¼ 0 and x ¼ a can be written in terms of
the parameter lm ¼ mp=a as

Umnðx; yÞ ¼ Y mnðyÞ sin lmx; (13)

where the transverse shape function Y mnðyÞ is expressed in terms of the parameters fmn and cmn;
and the constants Cimn that can be determined from the boundary conditions as

Y mnðyÞ ¼ C1mn ch
fmny

a

� �
þ C2mn sh

fmny

a

� �
þ C3mn cos

cmny

a

� �
þ C4mn sin

cmny

a

� �
: (14)

The parameters fmn and cmn to build up the transverse displacement function Y mnðyÞ are given
explicitly as

fmn ¼
mpffiffiffiffiffiffi

Dy

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 � DxDy þ
rhDya4o2

mn

m4p4

� �s
þ H

vuut ; (15)

cmn ¼
mpffiffiffiffiffiffi

Dy

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H2 � DxDy þ
rhDya4o2

mn

m4p4

� �s
� H

vuut (16)

in terms of the circular frequency

omn ¼
1

a2
ffiffiffiffiffiffi
rh

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dyf

4
mn � 2m2p2Hf2mn þ m4p4Dx

q
: (17)

Note that the parameters fmn and cmn are not independent but are related by

f2mn � c2mn ¼ 2m2p2H=Dy: (18)

For rectangular plates simply supported on all the four sides, the transverse shape function
Y mnðyÞ and circular frequency omn [18] are given in terms of the parameter mn ¼ np=b as

Y mnðyÞ ¼ sin mny; (19)

omn ¼
1ffiffiffiffiffiffi
rh

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l4mDx þ 2l2mm2nH þ m4nDy

q
: (20)

For rectangular plates simply supported at x ¼ 0 and x ¼ a with the two other sides free, the
frequency equation of the plate [18] is

ðc2mng
4
mn � f2mnd

4
mnÞshfmnr sin cmnr þ 2fmncmng

2
mnd

2
mnðchfmnr cos cmnr � 1Þ ¼ 0; (21)
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where

gmn ¼ ðf2mn � m2p2nxÞDy; dmn ¼ ðc2mn þ m2p2nxÞDy; r ¼ b=a: (22224)

The constants Cimn of the transverse shape function Y mnðyÞ in Eq. (14) are

C1mn ¼ dmn=½gmndmnðchfmnr � cos cmnrÞ	; (25)

C2mn ¼ �cmngmn=ðcmng
2
mn shfmnr � fmnd

2
mn sin cmnrÞ; (26)

C3mn ¼ gmn=½gmndmnðchfmnr � cos cmnrÞ	; (27)

C4mn ¼ �fmndmn=ðcmng
2
mn shfmnr � fmnd

2
mn sin cmnrÞ: (28)

The parameters fmn and cmn can be solved from Eqs. (18) and (21), while the circular frequency
omn can be obtained from Eq. (17).
For rectangular plates not having a pair of opposite simply supported sides, the typical mode

shape Umnðx; yÞ [19] can be written as

Umnðx; yÞ ¼ X mðxÞY nðyÞ; (29)

where X mðxÞ and Y nðyÞ are taken to be the mode shapes of the associated undamped beams
having the same boundary conditions as the plate in the x and y directions, respectively, which are
of the form

X mðxÞ ¼ A1m sin amx þ A2m cos amx þ A3m sh amx þ A4m ch amx; (30)

Y nðyÞ ¼ B1n sin bny þ B2n cos bny þ B3n shbny þ B4n chbny: (31)

Substituting Eq. (29) into Eq. (7), the circular frequency omn is obtained as

o2
mn ¼

1

~mmn

Z a

0

Z b

0

½ðDxa4m þ Dyb
4
nÞX

2
mðxÞY

2
nðyÞ þ 2HX mðxÞY nðyÞY

00
mðxÞY

00
nðyÞ	dxdy: (32)

For a rectangular plate clamped on four sides, the parameters in Eqs. (30) and (31) are

A1m ¼ �A3m ¼ 1; A2m ¼ �A4m ¼
sh ama � sin ama

cos ama � ch ama
; (33)

B1n ¼ �B3n ¼ 1; B2n ¼ �B4n ¼
shbmb � sin bmb

cos bmb � chbmb
; (34)

am ¼ lm=a; bn ¼ ln=b ðm ¼ 1; 2; . . . ; n ¼ 1; 2; . . .Þ; (35)

where the parameters lm and ln in the two directions can be obtained from the same equation for
a clamped beam

ch l cos l� 1 ¼ 0: (36)

Substituting Eqs. (33)–(36) into Eq. (32), the circular frequency omn can be obtained.



ARTICLE IN PRESS

F.T.K. Au, M.F. Wang / Journal of Sound and Vibration 281 (2005) 1057–1075 1063
2.3. Solution strategy

Consider the case of a constant load p0 moving at a constant speed ux in the x-direction (i.e.
uy ¼ 0) at a distance e0 from the x-axis. The actual force pðx; y; tÞ may be written in terms of the
mass of the moving load mp ¼ p0=g as

pðx; y; tÞ ¼ p0 � mp

@2w

@x2
u2x þ 2

@2w

@x @t
ux þ

@2w

@t2

� �
; (37)

where g is the acceleration due to gravity. Let the mass ratio be the ratio of the mass of the moving
load to that of the plate. For a low mass ratio, the inertia effect of the moving load can be
neglected and therefore the mass mp in Eq. (37) can be taken as zero. Further simplification is
possible as pðx; y; tÞ ¼ p0: If the initial free vibration is neglected, substituting the resulting
normalised force pmnðtÞ from Eq. (8) into Eqs. (9) and (3), the displacement of the plate under the
forced vibration of the moving load can be obtained as

wðx; y; tÞ ¼
X1
m¼1

X1
n¼1

p0Umnðx; yÞ

$mn ~mmn

Z t

0

expð�zmnomnðt � tÞÞUmnðuxt; e0Þ sinð$mnðt � tÞÞdt: (38)

The velocity _wðx; y; tÞ and the acceleration €wðx; y; tÞ of the plate can therefore be obtained by
differentiation.
However, when the mass ratio is high, the inertia effect of moving load cannot be neglected.

Substituting Eqs. (37) and (3) into Eq. (1) results in equations in terms of the modal coordinates.
The normalised equation of motion can be obtained by using the modal orthogonality conditions
and assuming proportional damping in the system as

€qmnðtÞ þ 2zmnomn _qmnðtÞ þ o2
mnqmnðtÞ ¼ pn

mnðtÞ; (39)

where the normalised force pn
mnðtÞ has the modified form

p�mnðtÞ ¼ pmnðtÞ �
mpUmn

~mmn

X1
m¼1

X1
n¼1

u2x
@2Umn

@x2
qmnðtÞ þ 2ux

@Umn

@x
_qmnðtÞ þ Umn €qmnðtÞ

� �
x¼uxt

y¼e0

: (40)

It should be pointed out that Eq. (39) is indeed coupled because of the normalised force pn
mnðtÞ on

the right-hand side. If the m and n indices in Eq. (39) are truncated after mu and nu terms,
respectively, it can be written in matrix form as

ð½I 	 þ ½Mm	Þf €Qg þ ð½Cd 	 þ ½Cm	Þf _Qg þ ð½Kd 	 þ ½Km	ÞfQg ¼ fPg; (41)

where ½I 	 is the identity matrix that results from normalisation by the generalised mass of the plate
~mmn; and the modal coordinates qmnðtÞ are arranged in the vector fQg as

fQg ¼ ½q11 � � � q1nu
� � � qmu1

� � � qmunu
	T (42)

and the velocity vector f _Qg and acceleration vector f €Qg are similarly the first and second
derivatives of fQg with respect to time t. The explicit forms of the generalised mass matrix ½Mm	 to
reflect the inertia effect of the moving load, the generalised damping matrices ½Cd 	 and ½Cm	; the
generalised stiffness matrices ½Kd 	 and ½Km	; and the generalised load vector fPg are given in
Appendix A.1. The modal responses fQg; f _Qg and f €Qg in Eq. (41) can be solved by a suitable
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higher-order numerical integration method [20]. Thereafter, the dynamic responses of the plate
can be obtained by substituting fQg; f _Qg and f €Qg into Eq. (3).
3. Calculation of acoustic pressure distribution

3.1. General formulae for acoustic pressure distribution

The acoustic pressure radiated from a vibration plate in an infinite baffle can be obtained
by evaluating the Rayleigh surface integral where each elemental area on the plate surface is
regarded as a simple point source of an outgoing wave and its contribution is added with an
appropriate time delay. Referring to Fig. 2, the acoustic pressure Fpresðx0; y0; z0; tÞ at the
observation point P with Cartesian coordinates ðx0; y0; z0Þ at time t caused by the vibration of the
plate is given by

Fpresðx0; y0; z0; tÞ ¼
r0
2p

Z a

0

Z b

0

€w x; y; t �
R

c

� �
1

R
dxdy (43)

where r0 and c are, respectively, the mass density and wave velocity of the acoustic medium,
€wðx; y; tÞ is the acceleration time history of the plate obtained previously, and R is the distance
between the observation point P and the infinitesimal element at ðx; yÞ on the plate surface. The
observation point P can alternatively be described by its spherical coordinates ðr; y;fÞ as shown in
Fig. 2, where r is the distance from the observation point P to the origin. The near and far acoustic
fields of the plate are then analysed according to Eq. (43).
Using the standard trapezoidal rule [15] in which the side a is divided into Nx equal segments

Dx (i.e. a ¼ Nx Dx) and the side b is divided into Ny equal segments Dy (i.e. b ¼ Ny Dy),
the acoustic pressure for rectangular plates under a light moving load can be computed from
x

yz 

o 

(x, y, 0)

P (x0, y0, z0)

φ

θ R

r

Fig. 2. Coordinate system used for evaluation of acoustic pressure.
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Eq. (43) as

Fpresðx0; y0; z0; tÞ ¼
r0DxDy

8p

XNx�1

i¼0

XNy�1

j¼0

€wðiDx; jDy; t � Ri;j=cÞ

Ri;j
þ

€wðði þ 1ÞDx; jDy; t � Riþ1;j=cÞ

Riþ1;j

�

þ
€wðiDx; ðj þ 1ÞDy; t � Ri;jþ1=cÞ

Ri;jþ1
þ

€wðði þ 1ÞDx; ðj þ 1ÞDy; t � Riþ1;jþ1=cÞ

Riþ1;jþ1

�
;

ð44Þ

where the distance Ri;j between the observation point P and the grid point at coordinates
(iDx; jDy) on the plate is given by

Ri;j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 � iDxÞ2 þ ðy0 � jDyÞ2 þ z20

q
: (45)

The corresponding formula for rectangular plates under heavy moving loads can be obtained
by substituting the solution to Eq. (41) into Eq. (43), giving

Fpresðx0; y0; z0; tÞ ¼
r0DxDy

8p

XNx�1

i¼0

XNy�1

j¼0

X1
m¼1

X1
n¼1

UmnðiDx; jDyÞ

Ri;j
€qmn t �

Ri;j

c

� ��

þ
Umnðði þ 1ÞDx; jDyÞ

Riþ1;j
€qmn t �

Riþ1;j

c

� �
þ

UmnðiDx; ðj þ 1ÞDyÞ

Ri;jþ1
€qmn t �

Ri;jþ1

c

� �

þ
Umnðði þ 1ÞDx; ðj þ 1ÞDyÞ

Riþ1;jþ1
€qmn t �

Riþ1;jþ1

c

� ��
: ð46Þ
3.2. Acoustic pressure distribution in the far field of plates under light moving loads

In the far field of the plate (i.e. rba; b), Eq. (43) can be further simplified for the case of light
moving loads. With reference to Fig. 2, the distance R can be approximated by

R � r �
x0

r
x �

y0
r

y ¼ r � x sin y cos f� y sin y sin f: (47)

When the damping effect is negligible (i.e. zmn ¼ 0), the acoustic pressure caused by a
rectangular orthotropic plate with general boundary conditions by a light moving load may be
estimated by

Fpresðx0; y0; z0; tÞ ¼
r0p0
2pr

X1
m¼1

X1
n¼1

Y nðe0Þ

~mmn

fD1mnða
mn
12 amn

22 � amn
11 amn

21 Þ þ D2mnða
mn
11 amn

22 þ amn
12 amn

21 Þ

þ D3mnðb
mn
12 bmn

22 � bmn
11 bmn

21 Þ þ D4mnðb
mn
11 bmn

22 þ bmn
12 bmn

21 Þ þ D5mnðc
mn
12 cmn

22 þ cmn
11 cmn

21 Þ

þ D6mnðc
mn
11 cmn

22 þ cmn
12 cmn

21 Þg ð48Þ

where the parameters D1mn2D6mn; and amn
ij ; bmn

ij and cmn
ij ði; j ¼ 1; 2Þ are given in

Appendix A.2.
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For a rectangular plate simply supported on two opposite sides, the acoustic pressure can be
further simplified as

Fpresðx0; y0; z0; tÞ ¼
r0p0
2pr

X1
m¼1

X1
n¼1

Y nðe0Þl
2
mu

2
x

~mmnðo2
mn � l2mu2xÞ

�

� ðdmn
12 dmn

22 � dmn
11 dmn

21 Þ sin lmux t �
r

c

� �h i
þ

n
ðdmn
11 dmn

22 þ dmn
12 dmn

21 Þ cos lmux t �
r

c

� �h i
�

omn

lmux

ðemn
12 emn

22 � emn
11 emn

21 Þ sin omn t �
r

c

� �h ih
þ ðemn

11 emn
22 þ emn

12 emn
21 Þ cos omn t �

r

c

� �h iio
; ð49Þ

where the parameters dmn
ij and emn

ij ði; j ¼ 1; 2Þ are given in Appendix A.3. For the special case of all
the four sides being simply supported, Eq. (49) still applies but the parameters emn

11 ; emn
12 ; emn

21 and
emn
22 take different forms as shown in Appendix A.3.
4. Numerical results and discussions

The properties of the rectangular orthotropic plate chosen for numerical study are length
a ¼ 10:8m; breadth b ¼ 3:6m; thickness h ¼ 0:15m; density r ¼ 2400kg=m3; Poisson’s ratio nx ¼

0:3 and flexural rigidity Dx ¼ 1:5� 105 kNm2 in the x-direction, damping coefficient cd ¼ 0; and
rigidity ratios Dy=Dx ¼ 0:5 and H=Dx ¼ 0:5: The properties of air as the acoustic medium are
density r0 ¼ 1:29 kg=m3 and speed of sound c ¼ 340m=s: The observation point is 2m above the
centre of the plate, namely at (5.4m, 1.8m, 2.0m). Unless otherwise specified, the plate in the
standard case is simply supported at x ¼ 0 and x ¼ a with the two other sides free. A moving load
of constant magnitude p0 ¼ 4:5kN moves at a constant speed ux ¼ 20m=s in the x-direction along
the longitudinal centreline (i.e. e ¼ 0m). The inertia effect of the moving load is ignored. The plate
is assumed to be undamped. The number of terms used are mu ¼ 8 and nu ¼ 8: In all the cases, the
time t required for the moving load to go across the plate is divided into 100 time steps.

4.1. Rectangular plate simply supported on two sides under a light moving load

The force p0 ¼ 4:5kN moves at a constant speed ux ¼ 20m=s in the x-direction at a variable
distance e0 from the x-axis. Fig. 3 shows the variations of the sound pressure at the observation
point P with the eccentricity e ¼ b=2� e0 with respect to the longitudinal centreline. It is seen that
the larger the eccentricity e, the smaller the sound pressure received from the plate.
Then the effect of speed is next investigated. The moving force p0 ¼ 4:5kN is to travel along the

longitudinal centreline (i.e. e ¼ 0m) at three different speeds ux ¼ 10; 20 and 30m/s. The
variations of the sound pressure at the observation point P are plotted against the time ratio t=t in
Fig. 4. It is observed that the higher the speed, the larger the sound pressure generated.
To investigate the effect of the damping coefficient, three cases are studied, i.e. cd ¼ 0; 1080 and

2160. The moving force p0 ¼ 4:5 kN is to travel along the longitudinal centreline (i.e. e ¼ 0m) at
speed ux ¼ 20m=s: Fig. 5 shows the effect of damping on the sound pressure generated. In general,
it is seen that the larger the damping coefficient, the smaller the sound pressure. Initially, the effect
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of damping is small. With the passage of time, the influence of damping is felt. The plate with
higher damping tends to be less noisy in the long run.

4.2. Rectangular plate simply supported on two sides under moving load with inertia effect
considered

In the previous cases, the inertia effect of the moving load has not been considered. To evaluate
this effect, the case of a moving force p0 ¼ 4:5 kN travelling along the longitudinal centreline (i.e.
e ¼ 0m) at speed ux ¼ 20m=s is revisited. Fig. 6 shows the results considering and ignoring the
inertia effect of the moving load. It is discovered that the sound pressure considering the mass
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effect is smaller than that neglecting it. Since the mass ratio between the moving load and the plate
is 0.0386, the mass effect on sound pressure cannot be neglected. These results are consistent with
the findings of Humar and Kashif [6].
5. Rectangular plate simply supported on four sides under light moving load

The standard case is re-analysed with the plate simply supported on four sides. Fig. 7 compares
the sound pressure generated against that in the standard case. In fact, these results reflect the
effects of structural frequency distribution and loading frequency content. It is seen that the larger
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the global stiffness of plate, the higher the structural frequencies, and the larger the sound
pressure caused by moving loads. Therefore, the boundary conditions do affect the sound pressure
generated by moving loads.
6. Conclusions

The vibrations of a rectangular orthotropic thin plate with general boundary conditions
traversed by moving loads are first solved analytically. The effects of light and heavy moving loads
are separately studied. Based on the Rayleigh integral and the analytical dynamic response of the
plate, the acoustic pressure distributions around the plate are obtained in the time domain.
Simplified methods for calculation of the acoustic pressure distributions in far field are developed.
Numerical simulations have been carried out to investigate the effects of moving mass, damping
coefficient, boundary conditions and moving speed on the dynamic responses of the plate and the
acoustic pressure distributions. It confirms that the sound pressure drops with the distance from
the path of moving load. It is observed that the higher the speed, the larger the sound pressure
generated. Damping is normally effective in reducing the sound pressure generated. The inertia
effect of the moving load tends to reduce the sound pressure, and therefore the mass of heavy
moving loads should be considered. The boundary conditions do affect the acoustic pressure
generated by moving loads. It is seen that the stiffer the plate, the higher the structural
frequencies, and the larger the sound pressure caused by moving loads.
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A. Appendix

A.1. Rectangular plates under heavy moving loads

For rectangular plates under heavy moving loads as discussed in Section 2.3, the
equation of motion with the m- and n-series truncated after mu and nu terms, respectively,
appears as

ð½I 	 þ ½Mm	Þf €Qg þ ð½Cd 	 þ ½Cm	Þf _Qg þ ð½Kd 	 þ ½Km	ÞfQg ¼ fPg; ð41Þ

where

fQg ¼ ½q11 � � � q1nu
� � � qmu1

� � � qmunu
	T; ð42Þ

½Mm	 ¼ mp
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� � �
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� � �

U11Umu1

~m11
� � �

U11Umunu

~m11

� � � � � � � � � � � � � � � � � � � � �

U1nu U11

~m1nu
� � �

U2
1nu

~m1nu
� � �

U1nu Umu1

~m1nu
� � �

U1nu Umunu

~m1nu

� � � � � � � � � � � � � � � � � � � � �

Umu1U11

~mmu1
� � �

Umu1U1nu

~mmu1
� � �

U2
mu1

~mmu1
� � �

Umu1Umunu

~mmu1

� � � � � � � � � � � � � � � � � � � � �

Umunu U11

~mmunu
� � �

Umunu U1nu

~mmunu
� � �

Umunu Umu1

~mmunu
� � �

U2
munu

~mmunu

2
6666666666664

3
7777777777775
; (A.1)

½Cd 	 ¼ 2Diagðz11o11 � � � z1nu
o1nu

z21o21 � � � z2nu
o2nu

zmu1omu1 � � � zmunu
omunu

Þ; (A.2)

½Cm	 ¼ 2uxmp

U11U
0
11

~m11
� � �

U11U
0
1nu

~m11
� � �

U11U
0
mu1

~m11
� � �

U11U
0
munu

~m11

� � � � � � � � � � � � � � � � � � � � �
U1nu U 0

11

~m1nu
� � �

U1nu U 0
1nu

~m1nu
� � �

U1nu U 0
mu1

~m1nu
� � �

U1nu U 0
munu

~m1nu

� � � � � � � � � � � � � � � � � � � � �
Umu1U

0
11

~mmu1
� � �

Umu1U
0
1nu

~mmu1
� � �

Umu1U
0
mu1

~mmu1
� � �

Umu1U
0
munu

~mmu1

� � � � � � � � � � � � � � � � � � � � �
Umunu U 0

11

~mmunu
� � �

Umunu U 0
1nu

~mmunu
� � �

Umunu U 0
mu1

~mmunu
� � �

Umunu U 0
munu

~mmunu

2
6666666666664

3
7777777777775
; (A.3)

½Kd 	 ¼ Diagðo2
11 � � �o

2
1nu

o2
21 � � �o

2
2nu

o2
mu1

� � �o2
munu

Þ; (A.4)
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fPg ¼ ½p11 � � � p1nu
p21 � � � p2nu

pmu1
� � � pmunu

	T; (A.6)

Uij ¼ Uijðuxt; e0Þ; U 0
ij ¼

@Uij

@x


x¼uxt

y¼e0

; U 00
ij ¼

@2Uij

@x2


x¼uxt

y¼e0

: (A.7)

A.2. Far-field acoustic pressure distribution of plates with general boundary conditions under light

moving load

The far-field acoustic pressure distribution of plates with general boundary conditions and
negligible damping under light moving load is given by

Fpresðx0; y0; z0; tÞ ¼
r0p0
2pr

X1
m¼1

X1
n¼1

Y nðe0Þ
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21 Þg; ð48Þ

where

D1mn ¼ �o2
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mn sin omn t �
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� �
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c

� �h i
; (A.8)

D2mn ¼ �o2
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r
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� �
� F 0

mn sin omn t �
r

c

� �h i
; (A.9)

D3mn ¼ �a2mu
2
x G0
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r
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; (A.10)

D4mn ¼ �a2mu
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; (A.11)
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; (A.12)

D6mn ¼ a2mu
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r

c

� �h i
; (A.13)
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A.3. Far-field acoustic pressure distribution of plates simply supported on two opposite sides under

light moving load

The far-field acoustic pressure distribution of plates simply supported on two opposite sides
with negligible damping under light moving load is given by

Fpresðx0; y0; z0; tÞ ¼
r0p0
2pr
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ð49Þ

where
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For the special case of all four sides being simply supported, Eq. (49) still applies but the
parameters emn

11 ; emn
12 ; emn

21 and emn
22 take different forms as follows:
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; (A.34)
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¼ �

ð�1Þnmn sinððomn=cÞb sin y sin fÞ

m2n � ðomn=cÞ2ðsin y sin fÞ2
; (A.36)

emn
22 ¼ �

mn½ð�1Þ
n cosððomn=cÞðy0=rÞbÞ � 1	

m2n � ðomn=cÞ2ðy0=rÞ2
¼ �

mn½ð�1Þ
n cosððomn=cÞb sin y sin fÞ � 1	

m2n � ðomn=cÞ2ðsin y sin fÞ2
: (A.37)
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